THE CCA DIRECTIVE 1 OF 2010

Ref: ICTA/CCA/CCAD/1/2010

10 December 2010

The Information and Communication Technologies Authority in the exercise of its function as the Controller of Certification Authorities and in pursuance of Section 18 (1) (z) of the Information and Communication Technologies Act 2001 (as amended), Section 37 of the Electronic Transactions Act 2000 (as amended) and Regulation 3 (3) of the Electronic Transactions (Certification Authorities) Regulations 2010, hereby issues the following Directive.

1. **Short title and Commencement**
 (i) This Directive shall be called “The CCA Directive 1 of 2010 - (CCAD 1 of 2010)”

2. **Scope and objective**
 This Directive sets out standards for all licensed, recognised and approved Certification Authorities for carrying out different activities associated with their functions.

Mr. T. Dwarka
Chairman

Dr. M. K. Oolun
Executive Director

To: All Licensed, Recognised and Approved Certification Authorities.
DIRECTIVE – I

Standards for Certification Authorities

1. The standards followed by the Certification Authority for carrying out its functions: –
 (1) Every Certification Authority shall observe the following standards for carrying out different activities associated with its functions.
 (a) **PKIX (Public Key Infrastructure)**
 Public Key Infrastructure as recommended by Internet Engineering Task Force (IETF) document draft-ietf-pkix-roadmap-09 for “Internet X.509 Public Key Infrastructure” (July , 2002);
 (b) **Public-key cryptography based on the emerging Institute of Electrical and Electronics Engineers (IEEE) standard P1363 for three families:**
 Discrete Logarithm (DL) systems
 Elliptic Curve Discrete Logarithm (EC) systems
 Integer Factorization (IF) systems;
 (c) **Public-key Cryptography Standards (PKCS)**
 PKCS#1 RSA Encryption Standard (512, 1024, 2048 bit)
 PKCS#3 Diffie-Hellman Key Agreement Standard
 PKCS#5 Password Based Encryption Standard
 PKCS#6 Extended-Certificate Syntax Standard
 PKCS#7 Cryptographic Message Syntax standard
 PKCS#8 Private Key Information Syntax standard
 PKCS#9 Selected Attribute Types
 PKCS#10 RSA Certification Request
 PKCS#11 Cryptographic Token Interface Standard
 PKCS#12 Portable format for storing/transporting a user’s private keys and certificates
 PKCS#13 Elliptic Curve Cryptography Standard
 PKCS#15 Cryptographic Token Information Format Standard;
(d) Federal Information Processing Standards (FIPS)
 FIPS 180-1, Secure Hash Standard
 FIPS 186-1, Digital Signature Standard (DSS)
 FIPS 140-1 level 3, Security Requirement for Cryptographic Modules;

(e) Discrete Logarithm (DL) systems
 Diffie-Hellman, MQV key agreement
 DSA, Nyberg-Rueppel signatures;

(f) Elliptic Curve (EC) systems
 Elliptic curve analogs of DL systems;

(g) Integer Factorization (IF) systems
 RSA encryption
 RSA, Rabin-Williams signatures;

(h) Key agreement schemes
 (i) Signature schemes
 DL/EC scheme with message recovery
 PSS, FDH, PKCS #1 encoding methods for IF family
 PSS-R for message recovery in IF family;
 (ii) Encryption schemes
 Abdalla-Bellare-Rogaway DHAES for DL/EC family;

(i) Form and size of the key pairs
 (1) The minimum key length for Asymmetric cryptosystem (RSA Algorithm) shall be
 2048 for the Certification Authority’s key pairs and 1024 for the key pairs used by
 subscribers.
 (2) The Certification Authority’s key pairs shall be changed every three to five years
 (except during exigencies as in the case of key compromise when the key shall
 be changed immediately). The Certification Authority shall take appropriate steps
 to ensure that key changeover procedures as mentioned in the approved
 Certificate Practice Statements are adhered to.
 (3) The subscriber’s key pairs shall be changed every one to two years;

(j) Directory Services (LDAP ver 3)
 X.500 for publication of Public Key Certificates and Certificate Revocation Lists
 X.509 version 3 Certificates as specified in ITU RFC 1422
 X.509 version 2 Certificate Revocation Lists;

(k) Publication of Public Key Certificate.
The Certification Authority shall, on acceptance of a Public Key Certificate by a subscriber, publish it on its website for access by the subscribers and relying parties. The Certification Authority shall be responsible and shall ensure the transmission of Public Key Certificates and Certificate Revocation Lists to the National Repository of the Controller, for access by subscribers and relying parties. The National Repository shall conform to X.500 Directory Services and provide for access through LDAP Ver 3. The Certification Authority shall be responsible for ensuring that Public Key Certificates and Certificate Revocation Lists integrate seamlessly with the National Repository on their transmission;

1) **Public Key Certificate Standard**

All Public Key Certificates issued by the Certification Authorities shall conform to International Telecommunication Union X.509 version 3 standard. X.509 v3 certificate basic syntax is as follows.

```plaintext
tbsCertificate
{
  Version
  Serial Number
  Signature
  Issuer
  Validity
  Subject
  Subject Public Key Information
  Issuer Unique ID  [1] IMPLICIT Unique Identifier  *optional*,
  — If present, version shall be v2 or v3
  Subject Unique ID [2] IMPLICIT Unique Identifier  *optional*,
  — If present, version shall be v2 or v3
  Extensions  [3] EXPLICIT Extensions  *optional*
  — If present, version shall be v3

  {
    Authority Key Identifier
  }

  {
    Key Identifier  *optional*,
    Authority Certificate Issuer  *optional*,
    Authority Certificate Serial Number  *optional*
  }
}

Subject Key Identifier
```
Key Usage
{
 Digital Signature
 Non Repudiation
 Key Encipherment
 Data Encipherment
 Key Agreement
 Key Cert Sign
 cRLSign
 Encipher Only
 Decipher Only
}

Private Key Usage Period
{
 Not Before optional,
 Not After optional
}

Certificate Policies
{
 Policy Information
 {
 Policy Identifier
 Policy Qualifiers optional
 }
}

Certificate Policy Id
{
 Policy Qualifier Info
 {
 Policy Qualifier Id
 Qualifier
 {
 cPSuri
 User Notice
 {
 Notice Reference optional
 }
 }
 }
}
Organization
Notice Numbers

} Display Text optional
{
 visibleString
 bmpString
 utf8String
}
Policy Mappings
{
 Issuer Domain Policy
 Subject Domain Policy
}
Subject Alternative Name
{
 General Name
 {
 Other Name
 {
 type-id
 value
 }
 Rfc822Name
 DNS Name
 X400 Address
 Directory Name
 edi Party Name
 {
 Name Assigner optional,
 Party Name
 }
 Uniform Resource Identifier
 IP Address
 Registered ID
}
Issuer Alternative Names
Subject Directory Attributes
Basic Constraints
{
 cA
 path Len Constraint optional
}
Name Constraints
{
 Permitted Subtrees optional
 Excluded Subtrees optional
}
Policy Constraints
{
 Require Explicit Policy optional
 Inhibit Policy Mapping optional
}
Extended key usage field
{
 Extended Key Usage Syntax
 Key Purpose Id
 {
 Server Authentication
 Client Authentication
 Code Signing
 Email Protection
 Time Stamping
 }
}
CRL Distribution Points
{
 CRL Distribution Points Syntax
 Distribution Point
 {
 Distribution Point optional
 }
}
i) Certificate

TBSCertificate is certificate “to be signed”. The field contains the names of the subject and issuer, a public key associated with the subject, a validity period, and other associated information. The fields are described in detail.

(ii) Version
This field describes the version of the encoded certificate. When extensions are used, as expected in this profile, use X.509 version 3 (value is 2). If no extensions are present, but a Unique Identifier is present, use version 2 (value is 1). If only basic fields are present, use version 1 (the value is omitted from the certificate as the default value).

(iii) Signature
This field contains the algorithm identifier for the algorithm used by the Certification Authority to sign the certificate.

(iv) Issuer
The issuer field identifies the entity who has signed and issued the certificate. The issuer field shall contain a non-empty distinguished name.

(v) Validity
The certificate validity period is the time interval during which the Certification Authority warrants that it will maintain information about the status of the certificate.

(vi) Subject
The subject field identifies the entity associated with the public key stored in the subject public key field. The subject name may be carried in the subject field and/or the subjectAltName extension. If the subject is a Certification Authority (e.g., the basic constraints extension, is present and the value of cA is TRUE,) then the subject field shall be populated with a non-empty distinguished name matching the contents of the issuer field in all certificates issued by the subject Certification Authority.

(vii) Subject Public Key Information
This field is used to carry the public key and identify the algorithm with which the key is used.

(viii) Unique Identifiers
These fields may only appear if the version is 2 or 3. The subject and issuer unique identifiers are present in the certificate to handle the possibility of reuse of subject and/or issuer names over time.

(ix) Extensions
This field may only appear if the version is 3. The extensions defined for X.509 v3 certificates provide methods for associating additional attributes with users or public keys and for managing the certification hierarchy. The X.509 v3 certificate format also allows communities to define private extensions to carry information unique to those communities. If present, this field is a sequence of one or more certificate extensions. The content of certificate extensions in the Internet Public Key Infrastructure is defined as follows, namely:--.

(a) Authority Key Identifier
The authority key identifier extension provides a means of identifying the public key corresponding to the private key used to sign a certificate. This extension is used where an issuer has multiple signing keys (either due to multiple concurrent key pairs or due to changeover). The identification may be based on either the key identifier (the subject key identifier in the issuer's certificate) or on the issuer name and serial number.

(b) Subject Key Identifier
The subject key identifier extension provides a means of identifying certificates that contain a particular public key.

(c) Key Usage
The key usage extension defines the purpose (e.g., encipherment, signature, certificate signing) of the key contained in the certificate. The usage restriction might be employed when a key that could be used for more than one operation is to be restricted. For example, when an RSA key should be used only for signing, the digital Signature and/or non-Repudiation bits would be asserted. Likewise, when an RSA key should be used only for key management, the key Encipherment bit would be asserted.

(d) Private Key Usage Period
The private key usage period extension allows the certificate issuer to specify a different validity period for the private key than the certificate. This extension is intended for use with digital signature keys. This extension consists of two optional components, not Before and not After. (This profile recommends against the use of this extension. Certification Authorities conforming to this profile MUST NOT generate certificates with critical private key usage period extensions.)

(e) Certificate Policies
The certificate policies extension contains a sequence of one or more policy information terms, each of which consists of an object identifier and optional qualifiers. These policy information terms indicate the policy under which the certificate has been issued and the purposes for which the certificate may be used. Optional qualifiers, which may be present, are not expected to change the definition of the policy.

(f) Policy Mappings
This extension is used in Certification Authority certificates. It lists one or more pairs of object identifiers; each pair includes an issuer Domain Policy and a subject Domain Policy. The pairing indicates the issuing Certification Authority considers its issuer Domain Policy equivalent to the subject Certification Authority’s subject Domain Policy.

(g) Subject Alternative Name
The subject alternative names extension allows additional identities to be bound to the subject of the certificate. Defined options include an Internet electronic mail address, a Directory Naming Service name, an IP address, and a uniform resource identifier (URI).

(h) Issuer Alternative Names

This extension is used to associate Internet style identities with the certificate issuer.

(i) Subject Directory Attributes

The subject directory attributes extension is not recommended as an essential part of this profile, but it may be used in local environments.

(j) Basic Constraints

The basic constraints extension identifies whether the subject of the certificate is a Certification Authority and how deep a certification path may exist through that Certification Authority.

(k) Name Constraints

The name constraints extension, which MUST be used only in a Certification Authority certificate, indicates a name space within which all subject names in subsequent certificates in a certification path shall be located. Restrictions may apply to the subject distinguished name or subject alternative names. Restrictions apply only when the specified name form is present. If no name of the type is in the certificate, the certificate is acceptable.

(l) Policy Constraints

The policy constraints extension can be used in certificates issued to Certification Authorities. The policy constraints extension constrains path validation in two ways. It can be used to prohibit policy mapping or require that each certificate in a path contain an acceptable policy identifier.

(m) Extended key usage field

This field indicates one or more purposes for which the certified public key may be used, in addition to or in place of the basic purposes indicated in the key usage extension field.

(n) CRL Distribution Points

The CRL distribution points extension identifies how CRL information is obtained.

(o) Private Internet Extensions

This extension may be used to direct applications to identify an on-line validation service supporting the issuing Certification Authority.

(p) Authority Information Access

The authority information access extension indicates how to access Certification Authority information and services for the issuer of the certificate in which the extension appears. Information and services may include on-line validation services and Certification Authority policy data.

(x) Signature Algorithm
The Signature Algorithm field contains the identifier for the cryptographic algorithm used by the Certification Authority to sign this certificate. The algorithm identifier is used to identify a cryptographic algorithm.

(xi) Signature Value
The Signature Value field contains a digital signature computed upon the Abstract Syntax Notation (ASN.1) DER encoded tbsCertificate. The ASN.1 DER encoded tbsCertificate is used as the input to the signature function. This signature value is then ASN.1 encoded as a BIT STRING and included in the Certificate's signature field.

(xii) Certificate Revocation List Standard –
CRL and CRL Extensions Profile - The CRL contents as per International Telecommunications Union standard ver 2 are as follows

CertificateList
{
 TBSCertList
 {
 Version
 Signature
 Issuer
 This Update
 Next Update
 Revoked Certificates
 {
 User Certificate
 Revocation Date
 Certificate Revocation List Entry Extensions
 {
 Reason Code
 {
 Unspecified
 Key Compromise
 CA Compromise
 Affiliation Changed
 Superseded
 Cessation Of Operation
 Certificate Hold
 Remove From Certificate Revocation List
 }
Hold Instruction Code
Invalidity Date
Certificate Issuer
} optional
Certificate Revocation List Extensions
{
Authority Key Identifier
Issuer Alternative Name
Certificate Revocation List Number
Delta Certificate Revocation List Indicator
Issuing Distribution Point
{
Distribution Point
Only Contains User Certs
Only Contains CA Certs
Only Some Reasons
Indirect Certificate Revocation List
}
} optional
Signature Algorithm
Signature Value
}
(i) tbsCertList
The certificate list to be signed, or TBSCertList, is a sequence of required and optional fields. The required fields identify the Certificate Revocation List issuer, the algorithm used to sign the Certificate Revocation List, the date and time the Certificate Revocation List was issued, and the date and time by which the Certification Authority will issue the next Certificate Revocation List.
Optional fields include lists of revoked certificates and Certificate Revocation List extensions.
The Revoked Certificate List is optional to support the case where a Certification Authority has not revoked any unexpired certificates that it has issued. The profile requires conforming Certification Authorities to use the Certificate Revocation List extension cRLNumber in all Certificate Revocation Lists issued. The first field in the sequence is the tbsCertList. This field is itself a sequence containing the name of the issuer, issue date, issue date of the next list, the list of revoked certificates, and optional Certificate Revocation List extensions.
Further, each entry on the revoked certificate list is defined by a sequence of user certificate serial number, revocation date, and optional Certificate Revocation List entry extensions. The fields are described in detail, as follows namely:-

(ii) **Version**
This optional field describes the version of the encoded Certificate Revocation List. When extensions are used, as required by this profile, this field MUST be present and MUST specify version 2 (the value is 1). If only basic fields are present, use version 1 (the value is omitted from the certificate as the default value).

(iii) **Serial number**
The serial number is an integer assigned by the Certification Authority to each certificate. It shall be unique for each certificate issued by a given Certification Authority (i.e., the issuer name and serial number identity a unique certificate)

(iv) **Signature**
This field contains the algorithm identifier for the algorithm used to sign the Certificate Revocation List. This field shall contain the same algorithm identifier as the signature Algorithm field in the sequence Certificate List.

(v) **Issuer Name**
The issuer name identifies the entity who has signed and issued the Certificate Revocation List. The issuer identity is carried in the issuer name field. Alternative name forms may also appear in the issuer Alternate Name extension. The issuer name field MUST contain an X.500 distinguished name (DN). The issuer name field is defined as the X.501 type Name, and MUST follow the encoding rules for the issuer name field in the certificate.

(vi) **This Update**
This field indicates the issue date of this Certificate Revocation List. This Update may be encoded as UTC Time or Generalized Time. Certification Authorities conforming to this profile that issue Certificate Revocation Lists MUST encode This Update as UTCTime for dates through the year 2049. Certification Authorities conforming to this profile that issue Certificate Revocation Lists MUST encode This Update as Generalized Time for dates in the year 2050 or later.

(vii) **Next Update**
This field indicates the date by which the next Certificate Revocation List will be issued. The next Certificate Revocation List could be issued before the indicated date, but it will not be issued any later than the indicated date. Certification Authorities should issue Certificate Revocation Lists with a Next Update time equal to or later than all previous Certificate Revocation Lists. Next Update may be encoded as UTCTime or GeneralizedTime.

(xiii) **Revoked Certificates**
Revoked certificates are listed. The revoked certificates are named by their serial numbers. Certificates revoked by the Certification Authority are uniquely identified by the certificate serial number. The date on which the revocation occurred is specified. Additional information may be supplied in Certificate Revocation List entry extensions;

(ix) CRL Entry Extensions

(a) Reason Code

The reason Code is a non-critical Certificate Revocation List entry extension that identifies the reason for the certificate revocation. Certification Authorities are strongly encouraged to include meaningful reason codes in Certificate Revocation List entries; however, the reason code Certificate Revocation List entry extension should be absent instead of using the unspecified (0) Reason Code value.

(b) Hold Instruction Code

The hold instruction code is a non-critical Certificate Revocation List entry extension that provides a registered instruction identifier, which indicates the action to be taken after encountering a certificate that has been placed on hold.

(c) Invalidity Date

The invalidity date is a non-critical Certificate Revocation List entry extension that provides the date on which it is known or suspected that the private key was compromised or that the certificate otherwise became invalid. This date may be earlier than the revocation date in the Certificate Revocation List entry, which is the date at which the Certification Authority processed the revocation.

(d) Certificate Issuer

This Certificate Revocation List entry extension identifies the certificate issuer associated with an entry in an indirect Certificate Revocation List, i.e. a Certificate Revocation List that has the indirect Certificate Revocation List indicator set in its issuing distribution point extension. If this extension is not present on the first entry in an indirect Certificate Revocation List, the certificate issuer defaults to the Certificate Revocation List issuer. On
subsequent entries in an indirect Certificate Revocation List, if this extension is not present, the certificate issuer for the entry is the same as that for the preceding entry.

(x) Issuing Distribution Point
The issuing distribution point is a critical Certificate Revocation List extension that identifies the Certificate Revocation List distribution point for a particular Certificate Revocation List, and it indicates whether the Certificate Revocation List covers revocation for end entity certificates only, Certification Authority certificates only, or a limited set of reason codes. Although the extension is critical, conforming implementations are not required to support this extension.

(xi) Signature Algorithm
The signature Algorithm field contains the algorithm identifier for the algorithm used by the Certification Authority to sign the Certificate List. This field MUST contain the same algorithm identifier as the signature field in the sequence tbsCertList.

(xii) Signature Value
The signature Value field contains a digital signature computed upon the ASN.1 DER encoded to be signed CertList. The ASN.1 DER encoded tbsCertList is used as the input to the signature function. This signature value is then ASN.1 encoded as a BIT STRING and included in the Certificate Revocation List’s signature Value field.

(2) The list of standards specified in sub-regulation (1) shall be updated at least once a year to include new standards that may emerge from the international bodies. In addition, if any Certification Authority or a group of Certification Authorities brings a set of standards to the Controller for a specific user community, the Controller shall examine the same and respond to them within ninety days.